
A Fermi National Accelerator Laboratory 
PERMILAB-Pub-91/240-A 
September 1991 

Cosmological Constraints on Pseudo-Nambu-Goldstone Bosons 

Joshua A. fiieman 

NASA/Fermilab Aatmphysics Center 

Fermi National Accelerator Laboratory 

Batavia, IL 6051 O-0500 

and 

Andrew H. Jaffe 

Department of Astronomy and Astrophykcs 
The University of Chicago 

5640 South Ellis Avenue, Chicago, IL 60637 

Abstract 

Particle physics models with pseudo-Nambu-Goldstone bosons (PNGBs) are characterized 

by two mass scales: a global spontaneous symmetry breaking scale f and a soft (explicit) 

symmetry breaking scale A. We investigate general model-insensitive constraints on this 

twodimensional parameter space arising from the cosmological and astrophysical effects 

of PNGBs. In particular, we study constraints arising from vacuum misalignment and 

thermal production of PNGBs, topological defects, and the cosmological effects of PNGB 

decay products, as well as astrophysical constraints from stellar PNGB emission. Bounds 

on the Peccei-Quinn axion scale, 10”’ GeV 5 fp~ 5 1O’O - 1012 GeV , emerge as a special 

case, where the soft breaking scale is fixed at AQCD N 100 MeV. 
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I. Introduction 

Particle physics models with spontaneously broken global symmetries are quite com- 

mon; by Goldstone’s theorem, the spectrum of such theories must contain a massless 

spin-0 boson for each broken symmetry group generator. If the global symmetry is only 

approximate, i.e., it is explicitly (in addition to being spontaneously) broken, the associ- 

ated bosom become massive pseudo-Nambu-Goldstone bosons (PNGBs). In nature, the 

best known example of this phenomenon is the ?r meson, associated with chiral symmetry 

breaking. Particle theory provides a host of additional PNGB candidates,’ including ax- 

ions, majorons, familons, and schizons (although the majoron and familon may be exactly 

massless Nambu-Goldstone bosons). 

Such models are generally characterized by two mass scales: the spontaneous symmetry 

breaking scale f, and an explicit breaking scale A. The simplest example is that of a 

complex scalar @ with a potential V(@*@) which is minimized at @ = fei4/f. The non-zero 

vacuum expectation value of @ spontaneously breaks the global U(1) symmetry $ -+ @e’” 

at the scale f, and the angular field 4 is the massless Nambu-Goldstone mode around the 

bottom of the ‘Mexican hat’ potential. At the lower scale A, a periodic potential for 4 

of height - A4 is generated. (The form of the potential may reflect a residual discrete 

symmetry.) The resulting PNGB has a mass given by m+ - AZ/f. In models with a 

large hierarchy between the scales f and A (f >> A), PNGBs are thus very light and 

also very weakly interacting, since their couplings are suppressed by inverse powers of f. 
Nevertheless, they can play an important role in astrophysics and cosmology. For example, 

in axion models, where f is the Peccei-Quinn scale fp4 and the symmetry is explicitly 

broken by QCD instantons (through the chiral anomaly) at the chiral symmetry breaking 

scale AQCD N 100 MeV, cosmological’ and astrophysical3 arguments constrain fpQ to lie 

in a narrow window around fpQ N 10 lo GeV (perhaps extending up to 1Or2 GeV, although 

this point is controversial; see below). 

Although motivated by the strong CP problem, the QCD axion is a particular instance 

of a more general phenomenon. For example, Hill and Ross4 have explored schizon models, 

in which A is associated with the mass of a light fermion (quark or lepton), and might 

plausibly lie in the eV (for neutrinos) to MeV (for charged leptons or quarks) range. 

On the other hand, superstring models contain one or more veryheavy axion fields; for 

example, for the model-independent axion (the imaginary counterpart to the dilaton), A 

is associated with the scale at which the gauge coupling in the hidden sector group becomes 

large. This naturally happens at a very high energy scale,s A - 1Or4 - 1Or7 GeV. (Indeed, 

it has been suggested that a PNGB with f - mpl and A - lOi GeV is a natural candidate 

for the inflaton field.7) 

2 



The lesson we draw from this is that there are a number of models with axions or 

&on-like particles in which the scale A has no connection with the QCD scale; indeed, 

from above we see that it may vary from the atomic to the Planck scale. We are thus led 

to consider the more general phenomenon of PNGB models in which both f and A are 

a priori unconstrained. In this paper, we investigate the cosmological and astrophysical 

constraints on this two-dimensional parameter space. These bounds have previously been 

studied in detail for the QCD axion with fixed A = AQCD; here, we explore how these 

constraints are altered when the scale A is allowed to vary over a wide range. In Sec. II, we 

discuss PNGB production from initial vacuum angle misalignment and the bound which 

results from requiring that the PNGB density satisfy R+h* 5 1. In Sec. III, we consider 

PNGB production from topological defects (strings, textures, and global monopoles) and, 

more generally, from long wavelength spatial gradients arising from the finite correlation 

length of the scalar field. We consider thermal production of PNGBs in Sec. IV. In Sec. V, 

we study a new wrinkle in PNGB phenomenology not present in ‘invisible’ axion models: 

if they are sufficiently massive, PNGBs decay on a timescale shorter than the age of the 

Universe; we examine the concomitant constraints on their decay products. In Sec. VI, we 

discuss astrophysical bounds arising from PNGB emission from red giants and supernova 

1987a, and we conclude in Sec. VII. In all cases, the bounds we obtain are relatively model- 

insensitive: aside from order unity couplings, the form of the PNGB interactions are fixed 

by symmetry, so they are not strongly model-dependent. 

Here, we briefly define some notation. In general, the PNGB 4 will be taken to have 

a (low-temperature) mass given by 

A2 
m4=-=10v5eV f (lOOkIeV)* ( lol’fGeV) . 

Eqn.(l.l) may be thought of as defining the scale A in terms of the PNGB mass and f. 

In general, the PNGB field is related to an angular parameter of the broken symmetry, 

4 = f 0, where 8 runs from 0 to 2~: we have absorbed any “winding” of the field into f. 

II. Non-Thermal Misalignment Production 

At high temperatures (T >> A), the angular degree of freedom representing the PNGB 

is randomly oriented. As the universe cools below a critical temperature Tr, the’-+ field 

will roll to the minimum of its potential and will begin to oscillate coherently, resulting in 

a Bose condensate that can be treated its a classical field configuration. 

Expanded about the minimum of the potential, the Lagrangian density of the PNGB 

can be written as 

f. = ;fp - ;m+(T)%+P (2.1) 
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for a spatially homogeneous field 4, to quadratic order in the field. (We consider the effects 

of inhomogeneities in the field in the next section.) In general, the potential r/(d) will have 

higher order terms, but these are comparatively small for 4 s f (0 2 1); these anharmonic 

effects in the potential will slightly increase the PNGB energy densitys if 0 2 1. 

We will parametrize the temperature-dependent mass of a general PNGB as 

m+(T) = m,$(T = 0) TZA 

where cy and v are fitting parameters of order unity. In the case of the QCD axion, 

the PNGB gains a mass at finite temperature due to QCD instantonsg; in this case, the 

behavior is approximately8 N N 0.1 and v N 3.7. However, the form of Eq. (2.2) holds 

more generally; the temperature-dependent mass in schizon models has also been discussed 

recently’“. 

The classical equation of motion for 4 is as usual for a scalar field in an expanding 

spacetime (ignoring for now the decay width of 4): 

4 + 3Hj + ma(T)‘+ = 0. (2.3) 

At high temperatures where m+(T) < 3H(T), 4 = & = f& is a constant and frozen to 

its initial value. As the temperature decreases, the mass turns on adiabatically; the field 

begins to oscillate coherently at a temperature Tr given by m+(Tr) = 3H(Tl). The PNGB 

energy density, averaged over an oscillation, then scales as 

P$b = (4’) 0: m&“)IR3, 
where R(t) is the scale factor of the universe; thus the number of PNGBs per comoving 

volume is conserved, R+ = p+/m+(T) cc Re3. [At low temperatures, when m+(T) = 

n4(0) = const., the PNGB energy density scales like non-relativistic matter, p++ cc Rv3 

(T < A).] As long as the expansion of the universe is adiabatic, the entropy density s is 

also proportional to R-3, so the ratio n+/s has been constant since the onset of coherent 

PNGB oscillations. If the entropy in a comoving volume has increased by a factor y since 

the onset of PNGB oscillations, the ratio n+/s will simply be reduced by this factor. Thus 

we can find the present PNGB abundance by calculating the PNGB-to-entropy ratio when 

coherent oscillations begin; since p(Tr) = m$(Tr)@/2, we have 

(2.5) 

where s = 2x2g,T3/45 is the entropy density, g*(T) counts the number of relativistic 

degrees of freedom at temperature T, and the subscript 1 denotes the value at TI 
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Reexpressing this in terms of the initial misalignment angle Qr and the low-temperature 

mass mo, using ms(Tl) = 3H1 = 5y~{’ 2 T, /m,l, appropriate for the radiation-dominated 

early universe, we can calculate the present PNGB density in terms of the critical density 

(defined by Hi = (8aG/3)p,,it) 

0, 
P4' ,mis EZ _ = (nds)(solrh 

Pcrit Pcrit 
11402 -1 (2.6) 

= 1.3 x lo-rOh-s GeV -s ry 
g*lm+Tl’ 

Here, the present Hubble parameter is Ho = 1OOh km/sec/Mpc, and observations indicate 

0.4 2 h 5 1; we have also used the fact that the present entropy density is ss = 2970cm -’ 

(for a photon temperature’r of 2.735K). Finally, Tl is given by m+(Tl) = 3H(Tl); for 

reference, in a radiation-dominated universe, 

Tl * -= 
( >- 
h&f 

A ffmp1 
(2.7) 

Substituting Eq. (2.7) into (2.6), we find 

Q, ,+sh* = 1.3 X 10-“8~ ($) (o.2;mpl)* y-'g:* (2.8) 

This expression merits several comments. First, it retains some implicit dependence on Tr 

through the term in g*r; however, between T N 1 TeV and today, g* has only changed by 

about two orders of magnitude, so this additional parameter does not have a substantial 

effect. Second, we have assumed in Eqns. (2.6) and (2.7) that the universe is radiation- 

dominated at TI. Thus, Eqn. (2.8) is only strictly valid if mg > 3H(T,J N 10mz6 eV, 

where T,, is the temperature when the universe fmst becomes matter-dominated. Third, we 

note that for the axion, the most well-studied and well-understood PNGB, there is a theo- 

retical uncertainty in this value of about* 10*0.4, coming mostly from the parametrization 

of the finite temperature mass; for the general case we might expect this to be larger. 

Solving this for A, and assuming from here on negligible entropy production, we find 

A 
- = 
GeV 

[(2.3 x 109)(2.4 x 10’s)*] g&* (&)-’ (&)-sCi+,,i.h2. 

(2.9) 
We can use our knowledge of the expansion and age of the universe to restrict these 

parameters: since the Hubble parameter h > 0.4 and the age of the universe to > 10” yr 

(from globular cluster and nucleocosmochronology dating) we have the constraint on the 

cosmic density,” Rob’ 5 1. This requirement translates into an allowed region of’the A-f 
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plane, for fixed values of the 0( 1) parameters (i.e., cy, I/, CJ*~, y, 81). We show this region 

in Fig. 1. 

We have chosen as a typical value of the initial misalignment angle 6’i = r/&-the 

RMS value of an angle randomly distributed between --?r and K. On average, we expect 

this value to hold because the present Hubble volume comprises a very large number of 

regions that were causally disconnected at ti = t( Tl), within each of which 01 was arbitrary. 

However, if the universe inflated during or after the PNGB symmetry breaking (at T - f) 
without reheating to temperatures above the symmetry-breaking scale f, we have no way 

of knowing the initial angle in our observable neighbourhood. In an inflationary scenario, 

it may be possible to escape this bound entirely if 81 N 0 in our neighbourhood of the 

universe, since the observable Hubble volume.would come from a single causally connected 

region within which 01 was homogeneous. See refs. 13 for discussion of these issues. 

Figure 1 shows that this process alone excludes a large portion of the A-f plane above 

the line representing Oh2 = 1. Note the spread of l-2 orders of magnitude by varying the 

model-dependent parameters about the “axionic” case. In particular, for small values of 

6’1, the amount of excluded parameter space is decreased rapidly since I;l~,mis K 6’;. 

We have also shown, for reference, lines of constant mass m+ For the axion, located 

on the horizontal line at A = AQCD N 100 MeV , misalignment production requires fpQ 5 

1013 GeV , in agreement with previous analyses2~8. 

III. PNGB Production from Symmetry Breaking 

When the universe cools below T - f and th y e s mmetry is spontaneously broken, 

global defects appropriate to the topology of the vacuum manifold will formr4. In the 

simplest case (which includes axions), the r&vent broken symmetry is U(l), the vacuum 

manifold S’ has non-trivial first homotopy group, rr(S’) = 2 (the integers), and the 

defects produced are global strings; we first consider this case. 

At T - f, the massive complex field @ = uei$/f rolls down to its minimum, I@1 = 

CT = f, anywhere around the “mexican hat,” since the potential for the phase of @ (the 

PNGB field 4) does not have discrete minima until T - A. Because the angular field 4 is 

initially uncorrelated on scales larger than the horizon, there will be closed loops in space 

around which 4 winds by 27rN, where N is an integer; by continuity, there must be some 

point within each surface spanned by such a loop where the angular field is undefined. 

These points are the cores of global strings, where the complex field is trapped in the 

false vacuum, @ = 0. Due to the gradient and potential energy of the configuration, these 

strings have an energy per unit length p 2: rf2 ln( f d), h w ere d is a characteristic distance 

between strings. (The logarithm comes from the gradient energy in the field.) 

In the absence of inflation, the global string network should, as in the case of gauge 
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strings, quickly reach the so-called scaling solutionr’; for long strings, the energy density 

then is of order 

Pstring - pt-2 
Pstring 
~ - Gp. 
Pt0t.d 

(3.1) 

For the scaling solution to be maintained, almost all the energy in strings must be radiated 

away each Hubble time as PNGBs (this is the crucial difference between global strings and 

gauge strings, which primarily decay through gravitational radiation). Thus the change in 

the relative PNGB abundance over one Hubble time will be 

where w is the average energy per radiated PNGB. This process will be effective from the 

epoch of spontaneous symmetry breaking (2’ - f) until the time when the PNGB mass 

m+ becomes comparable to the expansion rate H (at temperature Tr as before): the latter 

epoch corresponds to the time when: (1) the strings become connected by domain walls 

(at 2’ - A - Tr) and rapidly chop themselves up, and (2) the strings can no longer radiate 

into very low-frequency PNGB modes (since mm - H(T,) - w(t,)) which, at least in the 

Davis-Shellard scenario (see below), dominate PNGB production. Using the value of the 

Hubble parameter appropriate to a radiation dominated universe (H - t-’ - T2/m,l) 

and integrating Eqn.(3.2) gives 

n4+ 
J 

f dT -N P s 7-1 4t)m;l’ 

For global strings, there is considerable controversy surrounding the value of w(t), the 

average energy per radiated PNGB. Davis and Shellardr5 (DS) claim that the PNGBs 

should be radiated predominantly into low-frequency modes-wavelengths of order the 

horizon size (w N t-‘)-but Harari and Sikivie I6 (HS) argue for a l/lc spectrum, giving 

w - ln(ft)/t. Rather than make a decision regarding these contentious issues, we will 

parametrize our ignorance: the density of particles produced by the decay of global strings 

is given by 

n+ - f2 
- - %g$, ( > 

l-3 
s f 

where the value of S is a result of this debate over the PNGB spectrum. For the DS 

scenario, S - ln(ftr) (note that the logarithm comes from n - f2 In(fd - f2 ln(ftr)); 

for the HS scenario, S N 1, since the hr(ft) m w (taken out of the integral since it is 

much more slowly varying than the rest of the integrand) cancels with that from n. Since 



Ti - A < f, the energy density of string-produced PNGBs is 

(3.5) 

Aside from the factor of S, the abundance of string-produced PNGBs is comparable to that 

produced by the misalignment mechanism (compare Eqn.(2.8)), and may complement this 

mechanism or supplant it. Thus the string-produced density--and the resulting bound on 

f and A-for the HS case is comparable to that for misalignment production. 

For the DS scenario, we need to compute the quantity ln(fti); using Eqn(2.7) we find 

ftl = (3f2/2~A2)(5g~~2f/ampl)-Y/(Y+2), or 

ln(fti) = 93 + 21n (loo,,) +(z)h($) - (~)ln(ss::‘~‘/“) (3.6) 

In solving the equation for A, we can neglect the lnh term provided m+ < mprr valid 

over most regimes of physical interest. Furthermore, for the axion with (Y 11 0.1 and 

v N 3.7, the third term has a maximum value of about 2. Thus, we can approximate 

ln(ftl) = 91+ [(v + 4)/(~ + 2)] ln(f/ p ) m 1 an we can solve for limits on A due to cosmic d 

string decay: 

A 
-= [(5.1 x,lo’s)(2.4 x lO’8)iq (fl GeV )- 

% ~a~~~,s~2 
9.1 

GeV 91-b ($) [hr(f/10i2GeV) - 161 (3’7) 

for DS strings; remove the logarithmic factor in the denominator for the HS case. Despite 

the presence of the logarithm, the dependence of A upon f is still approximately that of a 

power law. If the DS analysis is correct, the PNGB abundance is increased by almost two 

orders of magnitude and the limits on the parameter space are correspondingly tighter. 

If the global symmetry group is not U(l), other defects will form, but similar results will 

obtain as long as these defects also follow scaling solutions like Eqn(3.1). For example, if 

the symmetry breaking is SU( 2) -+ U(l), global monopoles will form. Each monopole has 

an energy N 4nf2R, where R is a characteristic distance between monopoles. NAmeri& 

simulationsI show that there should be O(1 - 10) global monopoles per Hubble volume, 

R N t N H-‘, so the energy density in monopoles, p - (f/t)2, obeys the scaling solution. 

Global textures” which form, for example, in the symmetry breaking O(4) -+ O(3) also 

obey such a solution, and the results above will obtain. In general, then, the defects arising 

in global spontaneous symmetry breaking give rise to a PNGB density comparable to that 

produced by the misalignment mechanism, up to factors of order ln(ftr) (which depend 

on details of the spectrum and field configuration for the defect). 
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The bulk of the energy density of global strings, monopoles, or t,extures is carried in 

the gradient energy of the PNGB field itself (unlike gauge strings or monopoles, in which 

the energy is carried in the core of the defect). Thus, even ignoring the defects themselves, 

“Kibble” gradients in the PNGB field (which arise from the field taking on different random 

values in initially causally disconnected regions) will also result in a population of PNGBs: 

as the horizon grows to encompass previously uncorrelated regions, the PNGB field will 

smooth itself, with a correlation length t - l/H - t. At temperatures T 2 Ti, while the 

PNGB is still effectively massless, the gradient energy density is 

/‘grad - i(Vd)2 = ;fyve)2 

1 .f2 p) 
(3.8) 

“5 p 
- fV2. 

Once these long-wavelength fluctuations in ++ enter the horizon, we can consider them as 

a coherent state of C$ particles. Thus, spatial gradients in the PNGB field will produce a 

PNGB energy density again comparable to that produced by the misalignment mechanism. 

The excluded regions of the A-f plane are shown in Fig. 2. In this figure and below we 

only show the line for one set of model-dependent parameters, those appropriate for the 

axion. Bear in mind that these lines will have a spread of 1-2 orders of magnitude (compare 

Fig. 1). We show results for both DS and HS strings; we expect that any PNGBs produced 

from either topological defects or spatial gradients should span this range. For the axion 

itself, at A = hqcn N 100 MeV , HS strings restrict f 5 1Or2 GeV (not much different 

than the misalignment production bound), and DS strings restrict f 5 4 x 10” GeV (an 

improvement of almost two orders of magnitude). 

When the soft symmetry breaking that gives the PNGB its mass occurs at T - A, 

further topological defects may form, and we must insure that they are cosmologically 

benign. In the U(1) case, initially the PNGB field varies smoothly from 0 to 277 around 

the string. When the symmetry is explicitly broken at 2’ - A, the PNGB field is forced 

to its minimum, but the variation over 27~ cannot be removed. Thus, domain walls will 

form, bounded by strings. If the PNGB potential has a unique (non-degenerate) minimum, 

each string is bounded by a single wall, and the string-wall system rapidly chops itself up 

and disappears. (This assumes the strings have not been inflated away.) If the PNGB 

potential has multiple minima, however, or”if the strings are inflated away before the walls 

form, the domain walls would come to dominate the energy density of the universe and the 

microwave background would be strongly anisotropicig. Related phenomena may occur 

in other scenarios as well. For example, if the initial defects are global monopoles, the 

second symmetry breaking will result in monopoles connected by strings, leading to rapid 

monopole annihilation; in this case, the secondary defects are harmless. 
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IV. Thermal PNGB Production 

So far, we have assumed that PNGBs were not in thermal equilibrium in the early 

universe. That is, we have been assuming that microphysical scattering processes have 

had small impact on the abundance of PNGBs. Now, we consider the case in which 

PNGBs may couple to other constituents of the early universe and the conditions under 

which thermal production may be important. 

Since we wish to study constraints on PNGB properties that are as model-independent 

as possible, we do not know its couplings a priori. In general, however, the coupling 

strength will be suppressed by powers of (l/f). W e will consider two possible cases: 

(I) the PNGB is coupled to ordinary matter (e.g., quarks, leptons, and photons). (II) the 

PNGB is coupled only to the matter sector associated with the scale A, that is, to particles 

with masses 6 = (A/AQcD)mf(G), w h ere m is the mass of a quark or hadron, and f(G) 
depends on the gauge group associated with the scale A. For example, a “techni-axion” 

coupled only to technicolor particles would fall in category (II), with A the scale at which 

the technicolor gauge group becomes strong (- the electroweak scale). 

The interactions of the PNGB with photons and fermions are’ 

.L = gbr-,4E t B + c ima&+ysf) 
fermions 2mf 

(4.1) 

with coupling constants 
01/2T 

wfr = Q-q- 

S4ff = g,y 
(4.2) 

Here, gf and g-, are constants assumed to be of order one, although in some cases they 

may vanish (e.g., for the hadronic axion, which does not couple to electrons at tree level, 

ge = 0) or may be large (e.g., in Sikivie’s omion mode12”, gr - 105). In general, the values 

of these constants depend on the appropriate gauge-group charges, and to first order do 

not depend on f or A. Note that we have assumed the coupling to fermions is purely 

pseudoscalar, as is the case for axions, majorons, and familons in models without schizons. 

We will assume (following ref. 21) that the PNGB is produced in reactions like ab ++ c)X 

in the early universe, with species a, b, and X all in thermal equilibrium. The PNGB will be 

produced in copious amounts by scattering processes if’it ‘was ever in thermal equilibrium 

z.e., if its rate of production, P, exceeds the expansion rate of the universe, H. In that 

case, it will have an abundance given by the equilibrium value for relativistic bosons, 

n;Q 2 1.2T3/?r2 corresponding to a present energy density 

10 
Cl+,TEh2 = m+ - 

130eV g*F (4.3) 
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where S.F is the value of g* at the PNGB freeze-out t.emperature TF (defined by P(Tp) = 

H(TF)). Here we have assumed the PNGBs we relativistic at freeze-out, TF >> m$; since 

we will see below that ‘7~ - A, this just corresponds to the usual assumption that j >> A. 

Thus the crucial model-dependence enters into the calculation of r/H to decide if the 

PNGB has been in thermal equilibrium. If the PNGB couples to normal matter (case 

(I) above), the calculation is the same as that for the axion, and only the value of j-not 

A--enters. The PNGB abundance is controlled by two processes. Before the quark-hadron 

trmSitiOn at T - AQCD - mN/5 (where rn~ N 1 GeV is the nucleon mass), the dominant 

production mechanism is PNGB photo- or gluon production in the presence of a heavy, but 

still relativistic, quark, Q (since the coupling strength is proportional to the fermion mass) 

Q+y -+ Q4 or QG -+ Qd. After the quark-hadron transition, in the absence of free quarks, 

the dominant production mechanism is nucleon-pion scattering or pion-PNGB conversion, 

NT -+ N$. 

In the case of PNGB coupling only to particles with masses scaled by A (case (II) 

above), we will assume the same processes occuring for the “scaled” matter (and also 

a transition from scaled quarks to scaled hadrons at ‘I’ - A): Q-y + Q$ and fi7i + 

fi+, where all fermion masses have been scaled by X N h/Agc~, e.g., rn~ s hg N 

(UAQCD~Q. 

For PNGB photoproduction, the production rate P = nQ (~1~1) - cLP(m~/j)*, and 

H - Ts/m,r in a radiation-dominated universe, so 

‘-a(F) (,,y)’ TZA 
H (4.4) 

For pion-PNGB conversion, the nucleon abundance is Boltzmann-suppressed, nN 2: 

(ANT) 3/2e--mN/T, and the cross-section (uIv/) - T2/(jm,,)s, yielding 

; - (,NT)3f2g$&mN~T T 2 A. 

Due to the exponential decay of the nucleon abundance, the value of r/H will reach 

a maximum value very soon after the quark-hadron transition at 7’ N A. When the 

PNGB couples to ordinary hadrons (case (I)), it is at that time in thermal equilibrium 

((r/wT-a 2 1) for 

j 5 6 x lo*gN GeV (1). (4.6) 

We will define 5 = mN/A; for normal matter couplings, I N 5. For scaled cou- 

plings (case (II)), z will differ; e.g., in an SU(N) technicolor model, the technicolor 

scale A cx AQCD/~% and the mass of the lightest technibaryon rnr,~n cc mNfi so 
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5 = (,zQcD/~~QcD)N 2: 5N/3. In terms of 2, the rate for scaled matter is maximized when 

r -2 
- r-w 5.2 x lO’“&X 
H 

z-3/2,-Z 

where A = ?iz/m = (ii/AQc,,)(N/3) for SU(N) t ec mcoor models. In this case, the h 1 

requirement for thermal equilibrium becomes, defining y = x/5, 

f 5 6 x l,,sglc, GeV X1/2y-3/4e-5(Y-1)/2 UI) (4.8) 

or, for z = 5, N = 3, 

f 5 10g( A/ GeV )l/‘~~rj GeV (II). (4.9) 

When these constraints are combined, the result is shown in Fig. 2. R&’ is greater 

than 1 for the region above the appropriate lines; the hatched marks denote the intersection 

of the regions for which the PNGB is in thermal equilibrium and for which Q,h* > 1. For 

the axion, which couples to normal matter, the constraint given by Eqn.(4.6) applies, and 

requires that f 5 6 x lo8 GeV for the axion to be in thermal in equilibrium. In order for 

thermal axions to make up a considerable fraction of the closure density, the value of f 

would have to be quite small, f 5 5 x lo4 GeV Such a value of f would result in a very 

strongly coupled axion, already ruled out on astrophysical grounds (see section VI). 

V. Unstable Particles 

Thus far, we have assumed that the PNGB is stable (at least over times longer than the 

age of the universe). If it decays with a lifetime T into products which are still relativistic 

at the present time, the original PNGB density will have been redshifted away between 

the time of decay and today: 

R(r) 
fiDecay Products(h) = n!---- 

fh 
~Stable 

where R is the scale factor of the universe, Ro is its present value, n is such that R c( t” at 

the time of decay, t - T, &able is the density the species would have if it had not decayed, 

and flDp is the present density of the decay particles. 

If the particle decays when the universe is matter-dominated (7 2 tEQ = 4.4 x 

1010(R~hz)-2 set), n = 2/3, while if it decays in the radiation-dominated era (T 5 tEQ), 

R = l/2. During the matter-dominated epoch, R(t)/& = 2.9x 10-‘2(Roh2)‘/3(t/sec)2/3. 

During the radiation-dominated era, R(t)/Ro = 2.4 x 10-‘0g;1’12(t/ set)‘/*. Expressing 

this in more appropriate units, 

,$%?I = 
I 

2.0 X 10~28GeV2~3(~~h2)1~3~2~3 7 > tEQ; 

Ro 1.7 x 10ez2 GeV112g;1112$/2 7 < tEQ; 
(5.2) 
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which we parametrize as 
R(r) n!- e A,? 

RO 
(5.3) 

On dimensional grounds the PNGB decay rate should go as’ I - m$/f’, so the lifetime 

7 = l/l? would be given by 

where gd is a dimensionless coefficient of order one. (For comparison, the present age of 

the universe to = f(O)H,’ = 4 x 10i’sec for R = 1, h = l/2.) This gives 

flDP(t,,) = A,g,“f’*A-‘%s(to). (5.5) 

We can now insert our previous expressions for Rs, eqns. (2.8), (3.5), and (4.3), and 

these can then be solved for A. For example, PNGBs produced via the misalignment or 

defect mechanisms have a stable density given by equations (2.8) and (3.5): 

fb ,mis = CvAf ‘; 
v+3 

p=-----, 
u+2 

where C, is the coefficient of AfP in equations (2.8) or (3.5) and depends upon Y, cy, y,i, 

etc. Using this in our results for the density of decay products gives 

RDph’ = A,C,g~fS”+pA1-6” (5.7) 

or, solving for A, 
A = (A,‘C;‘g;nf-5”-PRDph2)I-sn, (5.8) 

In order to convert this expression, and similar ones for the production of PNGBs via 

string decay and thermal mechanisms, into limits on the PNGB parameters, we need to 

find a limit on finp. Clearly, requiring RDph’ < 1 would be the most conservative bound. 

However, if we make some assumptions about the nature of these decay products and the 

growth of structure in the universe, we can put far stricter bounds upon &jP. 

Observations of the cosmic microwave background I1 have determined that its devia- 

tions from a perfect blackbody are remarkably small. Specifically, spectral distortions due 

to the cosmological Sunyaev-Zel’dovich mechanism are below the level of ‘current measure- 

ments. When a batch of photons are dumped into the universe (due to a process like 

PNGB decay), the primary photons will Compton scatter off of free electrons, and the 

resulting hot electrons will in turn Compton scatter the microwave background, moving 

photons from the Rayleigh-Jeans to the Wien region. Clearly, this process is only relevant 

when the photons are produced before the era of recombination: (r 5 t,,,). The amount 

13 



of distortion is quantified by the Compton y-parameter y g (1/4)(Ap,/p,), where &p-, is 

the excess photon density injected by the decays; COBE measurements” have found that 

y 5 3 x 10m4. (Actually, at temperatures T 2 lo4 K, the spectral distortion takes the form 

of a non-zero chemical potential p, but the resulting bound is similar; we therefore focus 

on y.) Once the excess photons are dumped into the universe, they evolve the same way as 

the already-present background photons-y does not vary with time and is proportional 

to the ratio of finp to &,. 

We parametrize the amount of photon energy dumped into the universe by PNGB 

decay as L&L,(~) = B,f,p4(~), with B, the branching ratio for decay to photons, and fe the 

efficiency of Compton rescattering at the time of PNGB decay ( fc N 1 for 2’ 2 T,,,, fc N 0 

for T 5 T,,,). Using this for PNGBs with a lifetime r < t,,, N 5.6 x 10’2(fl~hZ)-‘/2 SW, 

we find 

Y=IgfRDph2 
4 ’ ’ C&h3 

5 3 x 1o-4 

or, since C&h2 = 2.6 x lo-‘, 

flDPh2 5 3 ;I;-“. 
1 c 

(5.9) 

(5.10) 

Although this limit on the CMB distortion via the Sunyaev-Zel’dovich effect is well- 

understood, it is only effective (fc N 1) for particles decaying at redshifts lo7 2 .ZD 2 z,,, N 

lo3 i.e., with lifetimes lo6 set 5 r 5 t,,,; photons injected at earlier times, t 5 10s set, 

will thermal& and produce no distortions. This bound also relies upon assumptions about 

the PNGB decay branching ratio to photons, B,. Because of these constraints, this bound 

actually gives us no new information, since the area of parameter space with the proper 

PNGB lifetime does not overlap with the area that is newly allowed by eq. (5.10). 

However, we can get a bound on Qop independent of the decay products, so long 

as they are relativistic, by considering the formation of structurez2. We know that the 

universe is matter-dominated today (as long as there are no exotic relativistic particles 

which came to dominate at very recent epochs; this caveat includes the decay products of 

the PNGBs, so we cannot put this bound upon fiDp if r N to), and that it must have been 

matter-dominated for long enough to allow structure formation to occur, since only in a 

matter-dominated epoch do density perturbations grow suf&iently rapidly, linearly with 

the scale factor of the universe. The epoch of matter domination is given by 

1 + Zeq = &/REQ =QNR/% (5.11) 

where firer is the density of relativistic particles, $&,I = R -(+“+fiDp, and !&R. is the present 

energy density of non-relativistic species. Thus, a significant QDp will decrease the redshift 

of matter-radiation equality. Moreover, if fiDp > fly+“, then the PNGBs dominated the 
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universe at the time of their decay, and the universe went through two periods of matter- 

domination: a first phase dominated by the PNGBs before they decayed into relativistic 

particles! and a second phase dominated by the presently non-relativistic matter. At the 

final epoch of matter-radiation equality, the comoving wavelength of the horizon scale is 

(assuming three light neutrino species) 

ke;’ = 5 Mpc (RN&)-r (1+$f (5.12) 

If the non-relativistic matter today is cold dark matter, he&r approximately sets the scale 

where the present fluctuation spectrum makes the transition from the primordial spectrum 

on large scales, 16fi12 - k” for k-i >> &,‘, to the processed spectrum on small scales, 16k12 - 

kne4 for k-’ < k&l. Enlarging this scale by having an appreciable !2np will increase the 

large scale power in 6p/p, for a fixed small-scale normalization (&p/p sz 1 at a scale of 

Sh-’ Mpc today, modulo biasing). The extra large scale power will in turn increase the 

quadrupole anisotropy of the CMB, which has been constrained by the Relikt experiments3 

to be (AZ’/Z’),,,,~=s < 1.5 x 10T5 at the 95% confidence level. (This bound assumes 

a scale-invariant (Harrison-Zel’dovich) primordial perturbation spectrum; the spectrum- 

independent bound is roughly a factor of two higher.) 

Recently, the qualitatively similar effects of a decaying 17keV neutrino on structure 

formation24 have been analyzed. For a primordial scale-invariant spectrum, the quadrupole 

bound limits its lifetime to be r 5 10 yr; we can translate this constraint into the require- 

ment that25 

k&l 5 54h-’ Mpc. (5.13) 

Using this in equation (5.12) with S&JR sz 1, we then obtain a limit upon &p: 

RDphs 5 115h*R,+,h* = 5 x 10-3hZ, (5.14) 
. 

or, for h = l/2, 

&)ph* 5 1.3 X 1O-3. (5.15) 

This corresponds roughly to the requirement that the universe become matter don6 

nated before or during the epoch of recombination. This constraint on 0np from structure 

formation is shown in Fig. 3, for each of the production mechanisms examined above. 

Decay processes make new areas of the parameter space “cosmologically allowed”: as we 

move away from T = to towards shorter and shorter lifetimes (i.e., earlier and earlier de- 

cay times), the density of PNGB decay products decreases because it is redshifted away. 

Note that the region of allowed parameter space for thermally-produced decaying PNGBs, 

especially those that couple to normal matter, is extremely small; any change in the 0( 1) 
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parameters that control their abundance is likely to make this region even smaller or 

eliminate it entirely. Furthermore, we have throughout assumed that each limit applies 

independently to each production mechanism. If, however, more than one mechanism is 

effective, then the limits will be tighter, due to separate contributions to 0.. 

VI. Astrophysical Constraints 

As we have already mentioned, the strength of the coupling of the PNGB to matter and 

radiation does not depend on the energy scale A, but is merely proportional to l/f. In fact, 

any work that restricts the couplings of any pseudoscalar particle is directly applicable to 

our general PNGBs. Astrophysical methods have been extremely valuable in constraining 

the mass of one pseudoscalar, the axion, and we will generalize the most important of these 

results here. 

If a PNGB couples strongly enough to matter or radiation, then it will be produced 

in copious amounts in astrophysical objects such as ordinary stars, red giant stars, and 

supernovae-if it is also light enough that its production is not Boltsmann-suppressed (m+ 

less than a few times the temperature of the object). If its interactions are still sufficiently 

weak, however, it may be able to stream freely out of the star after its production. This 

“cooling” mechanism-a misnomer, since the necessity of maintaining an equilibrium con- 

figuration generally increases the temperature-may strongly affect the evolution of these 

objects. 

The strongest stellar-evolutionary bounds to pseudoscalar couplings come from the 

examination of helium-burning (horzontal branch) stars. The coupling to photons is con- 

strained by the lifetime of these stars, observed via the fraction of stars seen in that area of 

a star cluster’s color-magnitude diagram. In the presence of PNGB cooling via the PNGB 

Primakoff process, y + (2, e-) -+ 4 + (2, e-), th e 1 ength of this evolutionary stage will be 

shortened: a value of 

g+-,+, s lo-” GeV -’ or f 2 107g, GeV (6.1) 

is necessary to keep the helium burning lifetime within an order of magnitude of obser- 

vations. This constraint holds for PNGB masses mg < 2’. If the PNGB mass is greater 

than the core temperature for typical horizontal branch stars T N 8.6 keV, the PNGB 

emission rate will be suppressed by roughly the factor exp(-m,+/T); this ignores any other 

mass-dependence of the emission rates, which will be swamped by the Boltmann factor for 

rn$ > T. (We have worked out the limits from Compton emission in horizontal branch 

stars using the exact temperature-dependence of the rate from Raffelt and Starkman 

and the constraints on f and A make only a small difference in fig. 4 below.) In general, 
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emission rates are proportional to g&,, so the constraint will become 

gbTy 5 10-‘“~“~‘7~* keV GeV -I or f 2 10 
7e-n,.4/‘7.2keVyy ~~~ (6.1~2) 

valid for either m+ << 8.6 keV or m+ >> 8.6 keV. 

The constraint on the coupling to electrons relies on the physics of helium ignition in 

low-mass red giants. These stars have cores of helium nuclei and degenerate electrons. 

Due to this degneracy the pressure does not increase as the temperature rises: when 

it rises sufficiently for helium burning (via the triple-alpha process) a thermal runaway 

occurs until the temperature is sufficient for degeneracy to be lifted. If PNGBs couple 

sufEciently strongly to the degenerate electron gas, they will be able to cool the core 

effeciently enough to prevent the ignition of helium-and this time the term “cooling” is 

appropriate as the temperature is decreased due to the PNGB streaming. The PNGBs are 

produced largely via the process of PNGB bremsstrahlung, e- + Ze + e- + Ze + 4 with 

an internal photon line. Calculations 26 show that this cooling will prevent helium burning 

for g+ 2 3 x 10-13. In order for the cooling to actually be effective, however, the PNGBs 

cannot couple so strongly that they remain trapped in the core, keeping the temperature 

high. This results in a “window” for which helium ignition will not occur: 

3 x lo--l3 s g6ee 2 6 x lo-'; 

that is, helium ignition will occur normally for 

(6.2) 

f 5 103g, GeV or f 2 10gg, GeV (6.3) 

In order for these bounds to hold, the mass of the PNGB must be much less than the 

temperature. For heavy PNGBs, the cooling limit is modified as in equation (6.la). In 

the trapping regime, the primary effect of masses m+ >> T will be to slow the PNGBs 

to non-relativistic velocities, decreasing the effective coupling CY+ = g&,/4r by a factor of 

the average thermal velocity of the PNGBs, CE’+ = cy(m+/T) I/*, thus reducing the coupling 

constant g+ee by a factor of (m,+/T)‘/“. In order to interpolate between the limits of 

m+ < T and m+ > T, we will modify this factor to (1 + VZ+/T)'/~. Thus our Helium 

ignition limits become 

f 5 103(1 + m#/8.6 keV)‘14g, GeV or f 2 10~e-“~/“~* keVge GeV (6.3~~) 

The strictest astrophysical bounds on pseudoscalar couplings arise from observations of 

the duration of the neutrino pulse from supernova 1987a. If the nucleon coupling is strong 

enough, PNGB emission will cool the supernova core so efficiently that the neutrino burst 

duration will be shortened. If they couple too strongly, however, PNGBs will be trapped 
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in a “PNGB sphere” (analagous to the neutrino-sphere) which will again lengthen the 

neutrino burst sufficiently to coincide with observation. The dominant emission process in 

the SN core is PNGB-Nucleon bremsstrahlung, NN + NN + C#J with an internal pion line. 

Numerical and analytical studies s6 have shown that the neutrino pulse will be unac- 

ceptably shortened for 

lo-lo 2 g&AJ‘&T 2 2 x lo-’ (6.4) 

assuming equal coupling to neutrons and protons (gsnn = g+pp = g+NN). Thus the 

neutrino burst will occur normally for 

f 5 5 x 106gN GeV or f 2 lO”gN GeV. (‘3.5) 

If we take account of masses m+ >> T,,,, - 30MeV as above, these constraints become 

approximately 

f 5 5 x 106(1 + m+/30MeV)“4g,v GeV or f 210 10e--m+/60 MeV gN GeV . (6.5~) 

Of course, none of these astrophysical bounds obtain unless the PNGB couples to 

normal matter and electromagnetic radiation. If, for example, the PNGB couples only to 

the photon, then only the bound on g4-rr from the helium burning lifetime will matter. 

Similarly, in the case of the hadronic axion, which does not couple at tree level to the 

electron (i.e., ge is very small) only the photon and nucleon bounds are relevent. 

We show the astrophysical bounds in Fig. ~4; for modest PNGB masses, the limits are 

merely upon the parameter f that controls the PNGB couplings. For extremely heavy 

PNGBs, however, the masses are comparable with the temperatures of the astrophysical 

objects under consideration, and the limits are strongly curtailed. 

For small values off, the coupling of the PNGB to matter becomes strong enough that 

it would show up in terrestrial accelerators. On the basis of nondetection of T + C$ + y 

and J/+ ---f 4 + y events, we can limit1 

f z103GeV. 

This bound holds for PNGB masses m+ 2 lMeV, above which the decay to electron- 

positron pairs becomes important. Thus, the lower left of fig. 4 is also disallowed, despite 

the regions allowed by trapping in helium-burning stars. 

Other groups have also been investigating various astrophysical constraints on low- 

mass PNGB properties. Gnedin and Mbzkos 27 have examined the conversion of PNGBs 

to radio photons in the magnetic field of a pulsar. Engel et a1.*s have used the nondetection 

of a direct axion signal from SN87a by the Kamiokande II detector to exclude the range 
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9.4x 10’ GeV 5 f /gr\l 5 1.0 x 10” GeV , for rnd < 30 MeV Ressell” uses the nondetection 

of a spectral axion line in the night sky resulting from present day decay of clustered axiom 

to exclude f/g-, < 2 x 10s GeV , for PNGBs with decay times r N ts. 

VII. Conclusions 

We have considered the cosmological and astrophysical bounds on the parameter space 

of broken global symmetry models with pseudo-Nambu-Goldstone bosons. As Figs. 1 and 

2 indicate, as the soft breaking scale A is increased, the cosmological upper bound on 

the spontaneous symmetry breaking scale f (due to the requirement that PNGBs have 

less than closure density today) is generally reduced, in accordance with expectations. 

However, this general trend is subverted when A becomes large enough that the PNGB 

decays on a timescale significantly shorter than the age of the Universe. In that case, since 

the relativistic PNGB decay products redshift away, the bounds are somewhat relaxed, 

as Fig. 3 shows. Since the stellar emission of PNGBs depends only on the scale f, the 

astrophysical lower limits on the axion scale fpQ (from red giants and SN1987a) can be for 

the most part taken over to the general case. However, these bounds do have an indirect 

dependence on the scale A through the Boltsmann suppression factor for PNGB emission 
w p4=, since m+ = AZ/f. Thus, for large values of A, the astrophysical lower bounds 

on f are also relaxed. From Fig. 5, which summarizes the astrophysical and cosmological 

constraints on the parameters A and f, we see that there are essentially two allowed regions 

of parameter space: (i) for A 5 1 - 50 GeV (depending on the DS vs. HS debate) and 

f 2 10” GeV, there is a triangular region allowed for stable, light (m+ 5 lo-’ eV) PNGBs; 

here the upper bound on f due to the cosmic PNGB density increases as A is reduced. 

(ii) For A 2 10 - 1000 GeV , there is a second allowed region; as A is increased above this 

limit, a widening window for f opens up. In this region, the PNGBs are heavy (m+ 2 1 

MeV) and unstable on a timescale short compared to the age of the Universe. 
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FIGURES 

FIG. 1. The excluded area of the I\-f plane for non-thermal misalignment production 

of stable PNGBs. The region above these lines has Rob’ > 1 and is excluded. The 

line labeled “base” is the axionic case, with the following parameters: v = 3.7, a = 0.1, 

g*i = 100, 6$ = r/d. The other lines differ from this case as marked in the legend. In 

addition, lines of constant mass (m+ = AZ/f) are shown for reference. 

FIG. 2. The excluded area of the A-f plane for all production mechanisms of stable 

PNGBs. For Misalignment and String production, the area above the R&’ = 1 lines 

is excluded as in Fig. 1. For Thermal production, the excluded area is above the line 

marked “In TE” and to the left of either the line marked “Thermal (Normal)” or “Thermal 

(Scaled),” depending on the PNGB couplings (see text). In this figure and below, we have 

set gN = 1. 

FIG. 3. The excluded area of the A-f plane for decaying PNGBs, limited by constraints 

of structure formation and CMB distortion, R~ph’ 5 1.3 x 10m3. The lines are as in 

Fig. 2, with the constraints bending over as the density redshifts away for PNGBs that 

have decayed by the present time. In this figure, we have set gd = 1. 

FIG. 4. The excluded area of the h-f plane due to astrophysical limits on PNGB cou- 

plings. The regions below the curves are disallowed by the various astrophysical arguments 

as marked. In this figure, we have set 9 e = SN = g-, = 1 (see text). Lines of constant 

PNGB mass are shown for reference. 

FIG. 5. The allowed areas of the A-f plane with all constraints from Figs. 34 

combined. Solid lines are constraints from misalignment and topological defects; dotted 

lines are from thermal production; short dashed lines are from astrophysical constraints. 

“PNGB dark matter” labels the region where R&* N 1. Lines of constant PNGB mass 

are shown for reference (long dashes). 
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